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SUMMARY e

The feasibility of building an 80ft high tallings impoundment dam
directly upon soft sensitive clayey silt foundation soils in a highly seis-
mic region 1s examined herein. The response of such material to earthquake
loading 1is an area of some controversy and limited field experience.
Laboratory tests indicate that this material will suffer a loss in both its
stiffness and strength when subjected to cyclic loading. These losses are
incorporated in analyses to show that the resulting earthquake induced

displacements of the dam will be tolerable.
INTRODUCTION

It is proposed to construct an 80 ft. high impoundment dam across the
valley at Greens Creek on Admiralty Island, Alaska. The foundation solls
comprise of a surface fibrous peat underlain by up to 80 fr. of soft to
firm clayey soils. The clayey soils form basicelly three layers: a firm
clayey silt and gravel layer underlain by; a soft clay-ailt layer underlain
by; a clayey-silty gravel layer. An 1dealized soil section in the down

valley direction is shown in Figure 1.

The atatic stabllity of an embankment dam on such a foundation will
tequire significant dreinage of the underlying solls. However, because the
embankment will be constructed over a long period of time, such drainage
may occur naturally or can be assisted to occur by a drainage system.

The proposed impoundment lies in a highly active seismic zone. An
earthquake having a Richter magnitude of 7 and a maximum acceleration of
0.3g on rock was considered appropriate for design purposes.

It is proposed to remove the surficial peat and to construct the
embankment dam directly upon the firm clayey-silt and gravel. The dam will
conprise of compacted rockfill with a =aloping upstream core of compacted
glacial t111 as shown in Figure 2. The water table will be at the base of
the dam. The purpose herein is to investigare the stabllity and deforma-
tion of the proposed impoundment under the design earthquake.

(I) Professor, University of British Columbia, Vancouver, Canada
{11) Senior Soils Engineer, Steffen Robertson and Kirsten,
Geotechnical, Mining and Environmental Engineer.

Canada,
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THE EFFECT OF EARTHQUAKES ON EARTH STRUCTURES

An earthquake has basically two effects on an earth structure, 1) the
shaking causes additional inertia forces on the structure, and 2) the shak-
ing may cause the soil to lose a significant portion of its strength and
stiffness. Most of the severe earthquake damage to earth structures has
been caused by strength and stiffness loss rather than by the additional
inertia forces. Saturated sands and non-plaatic silts are most prone to
such losses and their hehaviour haa been examined in detail by many
researchers and is well gsummarized by Seed (1979). The behaviour of
certain plastic silts and clayey soils under earthquake 1loading has
recently caused concern, (Seed, 1982), and this will be addressed herein.

Slopes comprised of plastic silts and clayey solls have generally
performed well during earthquakes. In particular, embankments comprised of
compacted clayey soils have suffered virtually no damage during very severe
earthquake shaking (Seed et al. 1978; Seed, 1979). The earthquake perform
ance of soll structures or slopes founded upon soft seunsitive clayey silts
such as are present at Greens Creek is not as well established. Samples of
naturally occurring clayey solls have been subjected to almulated
earthquake loading in the laboratory by subjecting them to eyclic loading.

The results indicate that such soils only suffer a aignificant strength
loss when the eyclic strains induced are large and the s0il {is very
sensitive and of low plastic limit, (Thiers and Seed, 1968, 1969; Castro
and Christian, 1976; Koutsoftas, 1978; Anderson et al., 1980; Singh et al.,
1981; Ishihara, 1981).

However, significant strains can develop and can be viewed as a reduc-
tion in shear modulus. The amount of modulus reduction depends on the
level of the cyclic strain and could result in damaging post-earthquake
movements of the structure. For highly sensitive or "quick™ clays it is
possible that earthquake loading could cause a complete loss in strength
leading to a flow slide, and Massarsch (1980), gives examples of flow
slides 1in such material which were initiated by shaking due to blast
loading.

Rased upon Chinese data, Seed and Idriss (1982) have suggested that
clayey soils having the following characteristics may be wvulnerable to
significant losses in strength:

Percent finer than 0.005 mm < 15%;
Iiquid limit < 35%;
Water content > 0.9 times the liquid limic.

They suggest that the hest way to determine the dynamic properties of
such materials should they plot above the A line, is by testing. Since the
Greens Creek material does have these characteristics, it was tested.

LABORATORY TESTING PROGRAM AND TEST RESULTS

A testing program was undertaken to determine the behaviour of the
clayey silt under gsimulated earthquake conditions. The material tested had
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a liquid limit of 28, a plastic limit of 17 and a natural water content in
the tange 24-34%Z. The program comprised of 11 consolidated undrained tri-
axial tests. Five of these tests were conducted on isotropically conseli-
dated samples and 6 on anisotropically consolidated ones. The purpose of
anigotropic consolidation was not to simulate ipsitu anisotropic consoli-
dation, but rather to simulate the static driving force or bias created by
construction of the dam and the stored tailinga.

Two of the tests were conducted under static loading. The stress—
strain curves for these tests are shown in Figure 3 and indicate that the
material is plastic rather than brittle with no significant strength loss
occurring for strains of up to 10 percent. The undrained strength ratio,
8,/p = 0.33, in which s, = (9,-03)/2 at failure and p = the mean normal
effective consolidation pressute.

The 4 c¢yclic tests were performed on 1isotropically consclidated
samples at a cyclic stress ratlo, (ﬂal)CYXZp, of 0.Z5. The number of
cycles to cause 5% double amplitude or peak to peak axial strain was
obtained for each test as shown In Figure 4. The tests indicate that 5 or
6 cycles of this stress ratio would result in 5% gtrain.

The post cycliec strength of each of the 4 tests was obtained and the
results are also shown on Figure 4. They indicate that the post-cyclic
strength ratio, (su) - cfp ranges from 0.15 to 0.33. The reason for the
large scatter in post-cyclic strength is thought to reault from the fact
that the cyclic strain was not limited to 5% but that much larger cyclic
strains actually occurred before the cyclic loading was stopped. 1In parti-
cular, test #4 which shows the lowest post-cyclic strength was subjected to
a very large unknown strain and hence this test should be discounted. The
lower 1imit of the post-cyclic strength ratio would then be 0.2. The very
limited tested data indicates that for peak to peak cyclic strains in the
range 5 to 10%, the post-cyclic strength ratio will likely exceed 0.2.
Since the static strength ratie was 0.33 this means that the post-cyclic
strength will likely exceed 60% of its static wvalue. Such a strength
reduction is in accord with data presented by Ishihara (1981) for clayey
soils of low plasticity and zero static shear stress.

The teduction in post-ecyclic strength as a function of single ampli-
tude cyclic shear strain level for a number of clayey soils including the
Greens Creek soil is shown in Figure 5 and 1s seen to be in accord with the
general body of test data. It 1s seen that cyclic shear strains in excess
of 1% are required to cause a significant reduction in strength.

The reduction in secant shear modulus as a function of single ampli-
tude cyclic shear strain level for these same soils is shown in Figure 6.
It may be seen that a very significant drop in post-cyclic shear modulus
may occur for cyclic shear strains of 1 percent.

The above data is appropriate for level ground conditons where there
is no driving force or static bias. When there is a static biaas preaent,
there will be an accumulation of strain between each cycle as shown in
Figure 7 where it may be seen that a strain accumulation of about 15
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percent occurs after 20 cycles. The double amplitude strain, however, is
still quite small being less than 2 percent.

The cumulative axial strain versus the combined static and dynamic
stress ratio is shown in Figure 8 where it may be seen that no significant
strain accumulation occurs until the combined stress ratio exceeds the
static strength ratio 0.33. This suggests that the material is behaving
mainly in an elastic-plastic manner with plastic strains occurring because
the applied dynamic stress exceeds the static strength of the aoil.

Because this 1is so, the cumulative strains will depend on the
frequency of loading. It is more meaningful in this case to examine the
cumulative strains in terms of cyecliec strain rather than stress ratlo as
shown in Figure 9. Tt may be seen that for single amplitude cyclic shear
strains below 0.15X%, essentially zero cumulative strain occurs, while for
cyclie straln above 1%, very large cumulative strains will result for the
static bias in question.

PREDICTED RESPONSE OF EMBANKMENT

The response of the embankment was predicted using the following three
approaches: a) The Newmark Method, b) The Dynamlc Stress and Strailam Path
Approaches, and c) A Nonlinear Dynamic Analysis.

a) Newmark Method

Newmark (1965) presented a simple method of predicting the earthquake
induced displacement of a slope based upon a single degree of freedom rigid
plastic aystem. If 1t 1s assumed that the soil has a strength
corresponding to s /p = 0.33, 1its static value, which seems reasonable
based on Figure 8, t%e computed displacement 1s 13 in. If, on the other
hand, based on the isotropic consolidation tests, the strength ratio was to
drop ta g, /p = 0.20, then an infinite displacement i1s computed. It will
be shown later that such a strength drop is not likely to occur.

b} The Dynamic Stress and Strain Path Approaches -

The dynamic stresa path approach was devised by Seed and his coworkers
over the past 20 years and 1is described in a number of papers including
Seed & Idriss (1982). Baslcally, the computed dynamic stresses are applied
to representative ssmples and the cumulative strains observed. These
stralns are then used to compute the earthquake induced displacements.
Herein sn equivalent viscoelastic dynamic analysis was used to compute the
dynamic stresses. These in turn were divided by the mean normal stress, p,
to form the equivalent cyclic stress ratlo T,,./p = 0.3. When this is
added to the static stress ratio value of 0.2 caused by the tailings, a
static plus dynamlec stress ratio of 0.5 1s obtalned. Based on Figure 8,
guch a stress ratio would cause unlimited strains.

If the material is indeed elastic—plastic as 1t appears to be, such
large dynamic stresses would not in fact occur during an earthquake.
Inatead, the material would yield plastically when the stress reached the
gtrength of the soll. The inerement of strain for the elastic-plastic
system would be about the same as for the equivalent elastic system. This
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agsumption 1s commonly made in earthquake analysis of steel and concrete
structures. If this 1is so, then the oscillating strains rather than
streases obtained from the equivalent wviscoelastic analysis are
appropriate. An equivalent shear strain, vy = 0.3%Z was computed. Based
on Figure 9, ten cycles of such a shear strain would result 1in an
accunulated strain of 0.B%. Based on an 80 ft. thickness of foundation
soil, such a strain would lead to a downslope movement of 8 in. This
approach, in which the eyclic strains rather than stresses are applied to
the sample, is called the straln path approach.

The predicted low cyclic shear strain value of 0.3% will not cause the
soll to lose significant strength (Fig. 5) and hence the assumption of no
strength loss for the Newmark analysis 1s appropriate.

A better estimate of the earthquake induced displacements can be
obtained from a static finite element analysis in which a reduced modulus
is used to allow for the earthquake 1induced strains (Byrne and Janzen,
1981). The original and deformed pattern of the dam is shown in Figure 10.
Displacements are seen to be in the range of 1/2 ft.

c) Nonlinear Analysis
A truly nonlinear dynamic analyais using an elastic plastic stress-

straln law with a strength corresponding to s /p = 0.3 was performed.
The cumulative strain in elements was found to ge about twice the cylic

strain, and the maximum displacement was about & in.
CONCLUSIONS

The earthquake response of a tailings impoundment to be founded upon a
soft sensitive clayey silt is examined herein. Laboratory test results
indicste that the material behaves in an elastic-plastic manner to cyclic
loading in the presence of a static bias. For such a material, it is
suggested that the Seed dynamic stress path approach may be inappropriate.
The Newmark approach, together with the dynamic strain path approach and a
truly nonlinear analysis, 1ndicate that the earthquake 1nduced
displacements will be less than 1 ft. Such displacements are quite

acceptable for a tailings impoundment.
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