Numerical groundwater flow modeling at the historic Rum Jungle Mine Site, Northern Territory (Australia)

Christoph Wels, Paul Ferguson, & Mike Fawcett

Robertson GeoConsultants Inc.

Consulting Engineers and Scientists for the Mining Industry www.robertsongeoconsultants.com

Site Background

- The Rum Jungle mine site is a historic uranium mine located near Darwin, NT, Australia (subtropical)
- ARD from waste rock, tailings, and open pits caused significant metal loading & fish kill in East Finnis River
- Initial rehabilitation (by government) was completed in mid-1980s but metal loads to river have remained elevated (Ferguson et al., 2011)
- NT Department of Resources has been tasked with developing a new rehabilitation plan (2010-2013)

Study Objectives

- RGC was retained by NT DoR to develop a 3D groundwater flow model for Rum Jungle mine site in order to:
 - Explain historic and current groundwater contamination on and offsite
 - Estimate seepage from different mine waste units (WRDs, backfilled open pits, Cu heap leach)
 - Estimate metal loading from different mine waste units to surface water (East Finnis River)
 - Evaluate different closure scenarios*
- * Future work

Overview of Presentation

- Conceptual Model of GW Flow & Contaminant Transport
- Development & Calibration of Groundwater Flow Model
- Modeling Results
- Implications for Rehabilitation Planning
- Path Forward

Site Layout

Conceptual Model Hydrostratigraphic Units

Conceptual Model Aquifer Properties

Conceptual Model GW Flow & Contaminant Transport

Conceptual Model Seasonal groundwater levels

Bores located near the Intermediate Open Pit (screened mainly in the Coomalie Dolostone)

3D Groundwater Flow Model Model Setup

3D Groundwater Flow Model Model Calibration

3D Groundwater Flow Model Model Verification

Simulating a de-watering trial conducted in 2008

Modeling Results Simulated Groundwater Flow Field (Wet Season)

Modeling Results Annual Water Balance

- The Main and Intermediate Open Pits represent a net source of water to the groundwater system (4 and 7 L/s, respectively)
- The Browns Oxide Open Pit represents a major sink for groundwater (22 L/s) due to active de-watering
- Seepage from mine waste units are estimated at:
 - Main WRD: 6 L/s
 - Intermediate WRD: 0.6 L/s
 - Dyson's WRD: 2.0 L/s
 - Dyson's backfilled WRD: 0.6 L/s

Implications for Rehabilitation Flow Path Analysis (for Contaminant Loading)

Implications for Rehabilitation Influence of Brown's Oxide Pit

Implications for Rehabilitation Contaminant Loading (by mine waste unit)

		Annual contaminant loads, in tons				
Feature	Flow, ML	SO ₄	Cu	Mn	Ni	Zn
Main WRD	200	1144	0.7	2.2	0.8	1.3
Intermediate WRD	23	593	1.1	2.7	2.1	5.0
Dyson's WRD	64	385	0.0	1.0	0.2	0.0
Dyson's (backfilled) Open Pit	24	152	1.8	3.2	1.2	0.1
Total:	311	2275	3.6	9.1	4.2	6.5

Key observations:

- 50% of the annual SO₄ load to the river is attributed to seepage from the Main WRD
- Intermediate WRD & Dyson's (backfilled) Open Pit are significant sources of metals
- Metal loads from Dyson's WRD are low (because it was only mined for uranium)

Path Forward

- Update model calibration using 2011/2012 monitoring data (water level and seepage flows)
- Use calibrated flow model for rehabilitation planning:
 - Predict groundwater flow and contaminant loading for alternative closure scenarios (e.g. waste relocation to flooded pits, high quality covers in-place)
 - Use flow model to design seepage interception systems (if required)
 - Use flow & contaminant load model to set performance targets for design of rehabilitation measures (e.g. acceptable rates of infiltration through waste rock cover)

QUESTIONS & DISCUSSION

Acknowledgements Staff at the NT Department of Resources

