

Current Groundwater Quality Conditions at the historic Rum Jungle mine site, Northern Territory (Australia)

Paul Ferguson & Christoph Wels

Mike Fawcett

Objectives/Overview

- 1. The Rum Jungle mine site is highly-impacted by acid rock drainage (ARD) and several attempts have been made at rehabilitation
- 2. Fish & other wildlife in the East Finniss River have been wiped out by toxic levels of dissolved metals
- 3. NT Department of Resources has been tasked with developing a new rehabilitation plan & RGC has been retained to assist

The purpose of this presentation is to:

- Briefly describe the history of mining & rehabilitation at the site
- Describe current conditions & work completed to date
- Outline the timeline for future rehabilitation

Rum Jungle mine site, Northern Australia

85 km south of Darwin in the Rum Jungle Mineral Field

Discovered in 1949 by local farmer

Mining began in 1953

White's, Intermediate, & Dyson's ore bodies were ultimately mined out (Dyson's solely for uranium, the other two for a suite of metals)

Mining ceased in late 1960s

History of mining & rehabilitation

1949: Discovery of uranium at Rum Jungle

1953 to 1969: Active mining

1969: Mining operations cease (& the site is abandoned)

1977: Initial rehabilitation attempts are made (prove unsuccessful)

1983: Rum Jungle Rehabilitation Project initiated (\$16.2M AUS)

1984/1985: Rehabilitation completed

Pumping & treating water from the flooded pits

Re-shaping & covering the waste rock piles

Backfilling one of the open pits with tailings & waste rock

1985 to 2009: Water quality conditions deteriorate due to ARD

2010: Decision made to rehabilitate (again) & site investigation initiated

2013: New rehabilitation plan to be implemented

Site Layout

East Finniss River & Aboriginal Sacred Sites

Central mine area

Central mine area

Dyson's Area

Dyson's Area

Current Conditions

Seepage loads to surface water

Seepage loads to surface water

Annual loads (t/yr)

2,500 SO₄

11 Cu

56 Fe

8 Zn

+ 20 to 25% from Dyson's & Open Cuts

Groundwater quality conditions poorly-characterized

103 historic monitoring wells & 27 new wells installed in 2010

Routine monitoring

Bi-monthly surveys of groundwater levels & quarterly water quality sampling

2010/2011 Wet Season

2011/2012 Wet Season

2012/2013 Wet Season

OBJECTIVES:

- Establish baseline conditions prior to further rehabilitation
- 2. Develop a groundwater flow model
- 3. Assess contaminant loads to East Finniss River via groundwater

Contaminant transport in groundwater

Receiving groundwater near waste rock piles

Groundwater beneath the former heap leach area

Groundwater beneath the former heap leach area

- Relatively unimpacted by ARD
- Highly-acidic, metals-laden water (residual seepage from heap leach)

Samples from December 2010

Well	рН	SO ₄ , mg/L	Al, mg/L	Cu, mg/L	Co, mg/L	Ni, mg/L	Zn, mg/L
PMB11	5.0	5,600	1	137	76	51	9
PMB23	3.5	5,340	38	506	74	56	11

Groundwater discharge to East Finniss River

Concluding remarks

Initial rehabilitation attempts at Rum Jungle have proven inadequate & hence water quality conditions have deteriorated over the last 25 years

A comprehensive site investigation of groundwater & surface water quality is underway to characterize current conditions at the site

This investigation will enable the development of a new rehabilitation plan that will be implemented in mid-2013

Acknowledgements

Staff at the NT Department of Resources
Australian National Archives (www.nt.gov.au/rumjungle)

